462 research outputs found

    Probing ultrafast carrier dynamics and nonlinear absorption and refraction in core-shell silicon nanowires

    Full text link
    We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at photon energies of 3.15 eV and 1.57 eV. The complex behavior of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photo-generated carrier density. Independent experimental results on crystalline silicon-on-sapphire help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single beam z-scan nonlinear transmission experiments at 1.57 eV in both open and close aperture configurations yield two-photon absorption coefficient \betabeta (~3 cm/GW) and nonlinear refraction coefficient \gammagamma (-2.5x10^-4 cm2/GW).Comment: 6 pages, 6 figure

    Terahertz All-Optical Modulation in a Silicon-Polymer Hybrid System

    Get PDF
    Although Gigahertz-scale free-carrier modulators have been previously demonstrated in silicon, intensity modulators operating at Terahertz speeds have not been reported because of silicon's weak ultrafast optical nonlinearity. We have demonstrated intensity modulation of light with light in a silicon-polymer integrated waveguide device, based on the all-optical Kerr effect - the same ultrafast effect used in four-wave mixing. Direct measurements of time-domain intensity modulation are made at speeds of 10 GHz. We showed experimentally that the ultrafast mechanism of this modulation functions at the optical frequency through spectral measurements, and that intensity modulation at frequencies in excess of 1 THz can be obtained in this device. By integrating optical polymers through evanescent coupling to high-mode-confinement silicon waveguides, we greatly increase the effective nonlinearity of the waveguide for cross-phase modulation. The combination of high mode confinement, multiple integrated optical components, and high nonlinearities produces all-optical ultrafast devices operating at continuous-wave power levels compatible with telecommunication systems. Although far from commercial radio frequency optical modulator standards in terms of extinction, these devices are a first step in development of large-scale integrated ultrafast optical logic in silicon, and are two orders of magnitude faster than previously reported silicon devices.Comment: Under consideration at Nature Material

    Cascaded logic gates in nanophotonic plasmon networks

    Get PDF
    Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks. This finding provides a path for the development of novel nanophotonic on-chip processor architectures for future optical computing technologies

    W-Curve Alignments for HIV-1 Genomic Comparisons

    Get PDF
    The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly.We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison.The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE.Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem
    • …
    corecore